JEE Main 2019 January session has commenced from January 8. National Testing Agency (NTA) conducted JEE Main 2019 Paper 2 on January 8 while Paper 1 for BTech candidates was held on January 9, 10 and 11 in computerbased mode. JEE Main 2019 Paper 1 for BTech will also be conducted on January 12. JEE Main Paper 2 for BArch programmes was held as both computerbased (Mathematics and Aptitude) and pen and paperbased mode. Both Paper 1 and Paper 2 is being held in two shifts from 9:30 AM to 12:30 PM (morning shift) and from 2:30 PM to 5:30 PM (afternoon shift). NTA released JEE Main 2019 admit card for the January session on December 17, 2018 on the official website.
JEE Main 2019 dates has been announced. Here we have given the official dates of JEE Main 2019 exam.
For April 2019 Exam:
Events 
Dates 
Application form release 
8th February 2019 
Correction in particulars except choice of cities 
11th15th March 2019 
Last date for application submission 
7th March 2019 
Last date for fee payment 
8th March 2019 
Availability of admit card 
20th March 2019 
Exam date 
7th April (Paper 2) & 8th, 9th, 10th & 12th April 2019 (paper 1) 
Result announcement of Paper 1 
By 30th April 2019 
Result announcement of Paper 2 
By 15th May 2019 
Candidates can fill the JEE Main 2019 application form through online mode only. Candidates should carefully fill the application form. Candidates are also instructed to carefully check the events given in the table and their respective dates. Follow the events as per the dates to avoid the rejection of the application form.
For January 2019 Exam:
Events 
Dates 
Application form available 
1st September 2018 
Mock test available 
September 2018 
Last date for application submission 
30th September 2018 
Last date for fee payment 
1st October 2018 
Application correction 
8th – 14th October 2018 
Exact date & shift announce 
5th October 2018 
Exam exam city announce 
21st October 2018 
Availability of admit card 
17th December 2018 
Exam date (paper 1) 
8th – 12th January 2019 
Exam date (paper 2) 
8th January 2019 
Result announcement 
19th January 2019 Click to Get Result Jan. 2019 
JEE Main Exam City Code
NTA has released the JEE Main 2019 exam city, centre, date and shift. The list of exam cities and centre codes is given below:
States  Cities  Codes 
Arunachal Pradesh  Itanagar  AL01 
Naharlagun  AL02  
Assam  Dibrugarh  AM01 
Guwahati  AM02  
Jorhat  AM03  
Silchar (assam)  AM04  
Tezpur  AM05  
Andaman & Nicobar  Port Blair  AN01 
Andhra Pradesh  Anantapur  AP01 
Bapatla  AP02  
Bheemavaram  AP03  
Chirala  AP04  
Chittoor  AP05  
Eluru  AP06  
Guntur  AP07  
Kadapa  AP08  
Kakinada  AP09  
Kurnool  AP10  
Nellore  AP11  
Ongole  AP12  
Rajahmundry  AP13  
Srikakulam  AP14  
Tadepalligudem  AP15  
Tirupati  AP16  
Vijayawada  AP17  
Visakhapatnam  AP18  
Vizianagaram  AP19  
Bihar  Aurangabad (bihar)  BR01 
Bhagalpur  BR02  
Biharsharif  BR03  
Darbhanga  BR04  
Gaya  BR05  
Muzaffarpur  BR06  
Patna  BR07  
Purnea  BR08  
Chhattisgarh  Bhilai/Durg  CG01 
Bilaspur  CG02  
Raipur  CG03  
Chandigarh  Chandigarh  CH01 
Daman & Diu  Daman & Diu  DD01 
Delhi/New Delhi  Delhi  DL01 
Dadra & Nagar Haveli  Dadra Nagar Haveli  DN01 
Gujarat  Ahmedabad  GJ01 
Anand  GJ02  
Bhavnagar  GJ03  
Gandhinagar  GJ04  
Godhra  GJ05  
Jamnagar  GJ06  
Junagarh  GJ07  
Mehsana  GJ08  
Patan  GJ09  
Rajkot  GJ10  
Surat  GJ11  
Vadodara  GJ12  
Valsad  GJ13  
Goa  Panaji/Madgaon  GO01 
Himachal Pradesh  Bilaspur (hp)  HP01 
Dharamshala  HP02  
Hamirpur (hp)  HP03  
Kangra  HP04  
Palampur  HP05  
Shimla  HP06  
Solan  HP07  
Haryana  Ambala  HR01 
Bahadurgarh  HR02  
Faridabad  HR03  
Gurugram  HR04  
Hisar  HR05  
Karnal  HR06  
Kurukshetra  HR07  
Panipat  HR08  
Sonepat/Murthal  HR09  
Jharkhand  Bokaro  JH01 
Dhanbad  JH02  
Jamshedpur  JH03  
Ranchi  JH04  
Jammu & Kashmir  Baramulla  JK01 
Jammu  JK02  
Samba  JK03  
Srinagar  JK04  
Karnataka  Bagalkot  KK01 
Belgaum  KK02  
Bellary  KK03  
Bengaluru  KK04  
Bidar  KK05  
Devanagere  KK06  
Dharwad  KK07  
Gulbarga  KK08  
Hassan  KK09  
Hubli  KK10  
Kolar  KK11  
Mangaluru  KK12  
Manipal  KK13  
Mysore  KK14  
Shivamogga(Shimoga)  KK15  
Tumkur  KK16  
Udupi  KK17  
Kerala  Alappuzha  KL01 
Angamaly  KL02  
Chenganur  KL03  
Ernakulam  KL04  
Idukki  KL05  
Kanjirappally  KL06  
Kannur  KL07  
Kasaragod  KL08  
Kollam  KL09  
Kothamangalam  KL10  
Kottayam  KL11  
Kozhikode  KL12  
Malapuram  KL13  
Moovattupuzha  KL14  
Palakkad  KL15  
Pathanamathitha  KL16  
Thiruvananthapuram  KL17  
Thrissur  KL18  
Lakshadweep  Kavarrati  LD01 
Meghalaya  Shillong  MG01 
Manipur  Imphal  MN01 
Madhya Pradesh  Balaghat  MP01 
Betul  MP02  
Bhopal  MP03  
Chhatarpur  MP04  
Chhindwara  MP05  
Gwalior  MP06  
Indore  MP07  
Jabalpur  MP08  
Khargaon  MP09  
Mandsur  MP10  
Rewa  MP11  
Sagar  MP12  
Satna  MP13  
Shahdol  MP14  
Ujjain  MP15  
Vidisha  MP16  
Maharashtra  Ahmednagar  MR01 
Akola  MR02  
Amravati  MR03  
Aurangabad (mr)  MR04  
Beed  MR05  
Bhandara  MR06  
Bhusawal  MR07  
Buldana  MR08  
Chandrapur  MR09  
Dhule  MR10  
Gadchiroli  MR11  
Gondia  MR12  
Jalgaon  MR13  
Kolhapur  MR14  
Latur  MR15  
Mumbai/Mumbai Suburban  MR16  
Nagpur  MR17  
Nanded  MR18  
Nasik  MR19  
Navi Mumbai  MR20  
Parbhani  MR21  
Pune  MR22  
Raigad  MR23  
Ratnagiri  MR24  
Sangali  MR25  
Satara  MR26  
Solapur  MR27  
Thane  MR28  
Wardha  MR29  
Washim  MR30  
Yavatmal  MR31  
Mizoram  Aizwal  MZ01 
Nagaland  Dimapur  NL01 
Kohima  NL02  
Odisha  Angul  OR01 
Balasore  OR02  
Berhampur  OR03  
Bhubaneswar  OR04  
Cuttack  OR05  
Dhenkanal  OR06  
Jeypore  OR07  
Rourkela  OR08  
Sambalpur  OR09  
Punjab  Amritsar  PB01 
Bathinda  PB02  
Fathegarh Sahib  PB03  
Jalandhar  PB04  
Ludhiana  PB05  
Mohali  PB06  
Pathankot  PB07  
Patiala  PB08  
Phagwara  PB09  
Ropar  PB10  
Sangrur  PB11  
Puducherry  Puducherry  PO01 
Rajasthan  Ajmer  RJ01 
Alwar  RJ02  
Bharatpur  RJ03  
Bhilwara  RJ04  
Bikaner  RJ05  
Jaipur  RJ06  
Jodhpur  RJ07  
Kota  RJ08  
Sikar  RJ09  
Sriganganagar  RJ10  
Udaipur  RJ11  
Sikkim  Gangtok  SM01 
Tripura  Agartala  TA01 
Telangana  Hyderabad  TL01 
Karimnagar  TL02  
Khammam  TL03  
Mahabubnagar  TL04  
Nalgonda  TL05  
Ranga Reddy  TL06  
Warangal  TL07  
Tamil Nadu  Chennai  TN01 
Coimbatore  TN02  
Cuddalore  TN03  
Dindigul  TN04  
Kanchipuram  TN05  
Kanyakumari  TN06  
Karur  TN07  
Madurai  TN08  
Nagarcoil  TN09  
Namakkal  TN10  
Salem  TN11  
Tanjore  TN12  
Thoothukudi  TN13  
Tiruchirappalli  TN14  
Tirunelveli  TN15  
Tiruvallur  TN16  
Tiruvannamalai  TN17  
Vellore  TN18  
Villipuram  TN19  
Virudhunagar  TN20  
Uttarakhand  Dehradun  UK01 
Haldwani  UK02  
Haridwar  UK03  
Nainital  UK04  
Pantnagar  UK05  
Roorkee  UK06  
Uttar Pradesh  Agra  UP01 
Aligarh  UP02  
Allahabad  UP03  
Bareilly  UP04  
Bulandshar  UP05  
Faizabad  UP06  
Ghaziabad  UP07  
Gorakhpur  UP08  
Greater Noida/Noida  UP09  
Jhansi  UP10  
Kanpur  UP11  
Lucknow  UP12  
Mathura  UP13  
Meerut  UP14  
Moradabad  UP15  
Muzaffarnagar  UP16  
Sitapur  UP17  
Varanasi  UP18  
West Bengal  Asansol  WB01 
Bardhman  WB02  
Darjeeling  WB03  
Durgapur  WB04  
Haldia  WB05  
Hooghly  WB06  
Howrah  WB07  
Kalyani  WB08  
Kharagpur  WB09  
Kolkata  WB10  
Siliguri  WB11 
JEE Main 2019 Exam Schedule
Pre Exam Schedule:
JEE Main application form has been released via online mode. Candidates are able to fill and submit the application form from 1st September 2018. Last date to submit the application is 30th September 2018. The fee payment was done till 1st October 2018.
Any correction in the JEE Main 2019 application form can be done from 8th – 14th October 2018. The JEE Main admit card has been released on 17th December 2018.
The JEE Main exam will be conducted on 8th – 12th January 2019 (Jan session) and 6th – 20th April 2019 (April session). The paper 2 will be conducted on 8th January 2019 in two shifts.
Post Exam Schedule:
After the successful downloading of JEE Main admit card, the exam will be held through online mode. After the completion of the exam, the answer key will be released within a week after the examination. The authority provide the results of JEE Main 1 on 31st January 2019. The cut off will be released along with the result. After the result announcement, JEE Main 2019 counselling will be started from the 3rd week of June 2019.
JEE Main Eligibility 2019 has been published by the National Testing Agency (NTA). It is the main exam conducting authority which organizes Joint Entrance Examination (JEE Main). This exam is national level examination conducts to provide admissions in undergraduate engineering courses in IITs, NITs and IIITs. It is conducted in online (computer based mode) mode. Before filling the application form candidates must have satisfied themselves with the eligibility criteria that they are eligible for the paper which they are applying for. Here in this article, we have provided the information about officially announced JEE Mains 2019 Eligibility.
Eligibility for Paper 2 (B.Arch):
As per the notification released by COA, we have mentioned below the eligibility criteria for paper 2 (B.Arch):
Course  Criteria Required for Admission 
BE/B.Tech 
Passed 10+2 examination with Physics and Mathematics as compulsory subjects along with one of the Chemistry/Biotechnology/Biology/ Technical Vocational subject. 
B.Arch/B.Planning 
Passed 10+2 examination with Mathematics. 
READ  These tips will help NEET repeaters to secure a seat next year
READ  Tips to crack JEE
Also Read : List Of Foreign Medical Institutions/Universities For MBBS
For all latest Govt Jobs 2018, Railway Jobs, Bank Jobs and SSC Jobs log on to https://goo.gl/YPjt94 We bring you fastest and relevant notifications on Bank, Railways and Govt Jobs. Stay Connected
http://fyjc.vidyarthimitra.org
 Govt. & Private Jobs, Internships, Campus Drive, Offcampus & many more 
Recommended Books
Books play a very important role for the preparation of any kind of examination. The following table shows the names of the books which every aspirant must study:
JEE
1) 2) 3) 4) 5) 6) 7) 8) 9) 10)

Get free Educational & jobs alert on WhatsApp OR Telegram(https://t.me/VidyarthiMitra) Save this mobile number (77200 25900) on your phone as VidyarthiMitra.org and send WHATSAPP message (Your Name, City & Interest)

'विद्यार्थी मित्र' जॉईन करा आणि मिळवा न्यूज, नोकरी, शासकीय व निमशासकीय नोकऱ्यांच्या जाहिराती व माहिती अगदी विनामूल्य ते ही आपल्या व्हॉटस्अॅपवर किंवा* *टेलेग्राम (https://t.me/VidyarthiMitra) हा मोबाईल नं. सेव्ह करून आपले <नाव> <शहराचे नाव> <नोकरी> ७७२०० २५९०० मेसेज पाठवा

JEE Main Syllabus 2019  National Testing Agency (NTA), the exam conducting body has released JEE Main Syllabus of all subjects Physics, Chemistry and Mathematics. Aspirants appearing for the exam can check out the subject wise JEE Main 2019 syllabus below. With NTA taking over CBSE to conduct JEE Main, a few things have changed. However, the JEE Main 2019 syllabus and exam pattern remains unchanged and will be the same as 2018.
JEE Main Syllabus 2019 for Paper1 for BE/BTech
JEE Main 2019 Paper 1 syllabus for Mathemtics, Physics and Chemistry for BE/BTech candidates is given below.
JEE Main 2019 Mathematics Syllabus
Like the other two subjects of JEE Main syllabus 2019  Physics and Chemistry, the Mathematics section of JEE Main 2019 will be of 120 marks (30 qustions of 4 marks each). However, for any question answered incorrectly, one mark will be deducted. In 2018, the highest weightage in Mathematics was given to chapters like sequence and series, straight lines, 3D, Determinant, etc. Check out the detailed JEE Main 2019 syllabus for Mathematics.
Units 
Topics 

UNIT 1: Sets, relations and functions 
Sets and their representation; Union, intersection and complement of sets and their algebraic properties; Power set; Relation, Types of relations, equivalence relations, functions; Oneone, into and onto functions, composition of functions. 
UNIT 2: Complex numbers and quadratic equations 
Complex numbers as ordered pairs of reals, Representation of complex numbers in the form a+ib and their representation in a plane, Argand diagram, algebra of complex numbers, modulus and argument (or amplitude) of a complex number, square root of a complex number, triangle inequality, Quadratic equations in real and complex number system and their solutions. Relation between roots and coefficients, nature of roots, formation of quadratic equations with given roots. 
UNIT 3: Matrices and determinants 
Matrices, algebra of matrices, types of matrices, determinants and matrices of order two and three. Properties of determinants, evaluation of determinants, area of triangles using determinants. Adjoint and evaluation of inverse of a square matrix using determinants and elementary transformations, Test of consistency and solution of simultaneous linear equations in two or three variables using determinants and matrices. 
UNIT 4: Permutations and combinations 
Fundamental principle of counting, permutation as an arrangement and combination as selection, Meaning of P (n,r) and C (n,r), simple applications. 
UNIT 5: Mathematical induction 
Principle of Mathematical Induction and its simple applications 
UNIT 6: Binomial theorem and its simple applications 
Binomial theorem for a positive integral index, general term and middle term, properties of Binomial coefficients and simple applications. 
UNIT 7: Sequences and series 
Arithmetic and Geometric progressions, insertion of arithmetic, geometric means between two given numbers. Relation between A.M. and G.M. Sum upto n terms of 
UNIT 8: Limit, continuity and differentiability 
Real – valued functions, algebra of functions, polynomials, rational, trigonometric, logarithmic and exponential functions, inverse functions. Graphs of simple functions. Limits, continuity and differentiability. Differentiation of the sum, difference, product and quotient of two functions. Differentiation of trigonometric, inverse trigonometric, logarithmic, exponential, composite and implicit functions; derivatives of order upto two. Rolle’s and Lagrange’s Mean Value Theorems. Applications of derivatives: Rate of change of quantities, monotonic – increasing and decreasing functions, Maxima and minima of functions of one variable, tangents and normals 
UNIT 9: Integral calculus 
Integral as an anti – derivative. Fundamental integrals involving algebraic, trigonometric, exponential and logarithmic functions. Integration by substitution, by parts and by partial fractions. Integration using trigonometric identities. 
Evaluation of simple integrals of the type Integral as limit of a sum. Fundamental Theorem of Calculus. Properties of definite integrals. Evaluation of definite integrals, determining areas of the regions bounded by simple curves in standard form. 

UNIT 10: Differential equations 
Ordinary differential equations, their order and degree. Formation of differential equations. Solution of differential equations by the method of separation of variables, solution of homogeneous and linear differential equations of the type: dy/dx+p(x)y=q(x) 
UNIT 11: Coordinate geometry 
Cartesian system of rectangular coordinates 10 in a plane, distance formula, section formula, locus and its equation, translation of axes, slope of a line, parallel and perpendicular lines, intercepts of a line on the coordinate axes. 
Straight lines: Various forms of equations of a line, intersection of lines, angles between two lines, conditions for concurrence of three lines, distance of a point from a line, equations of internal and external bisectors of angles between two lines, coordinates of centroid, orthocentre and circumcentre of a triangle, equation of family of lines passing through the point of intersection of two lines. 

Circles, conic sections: Standard form of equation of a circle, general form of the equation of a circle, its radius and centre, equation of a circle when the end points of a diameter are given, points of intersection of a line and a circle with the centre at the origin and condition for a line to be tangent to a circle, equation of the tangent. Sections of cones, equations of conic sections (parabola, ellipse and hyperbola) in standard forms, condition for y = mx + c to be a tangent and point (s) of tangency. 

UNIT 12: Three dimensional geometry 
Coordinates of a point in space, distance between two points, section formula, direction ratios and direction cosines, angle between two intersecting lines. Skew lines, the shortest distance between them and its equation. Equations of a line and a plane in different forms, intersection of a line and a plane, coplanar lines. 
UNIT 13: Vector algebra 
Vectors and scalars, addition of vectors, components of a vector in two dimensions and three dimensional space, scalar and vector products, scalar and vector triple product. 
UNIT 14: Statistics and probability 
Measures of Dispersion: Calculation of mean, median, mode of grouped and ungrouped data calculation of standard deviation, variance and mean deviation for grouped and ungrouped data.

UNIT 15: Trigonometry 
Trigonometrical identities and equations. Trigonometrical functions. Inverse trigonometrical functions and their properties. Heights and Distances. 
UNIT 16: Mathematical reasoning 
Statements, logical operations and, or, implies, implied by, if and only if. Understanding of tautology, contradiction, converse and contrapositive. 
Mathematics Topicwise Weightage (Expected) & Percentage of Questions Asked in JEE Main
Mathematics Topics & Number of Questions (Expected) Asked in JEE Main
Topics 
No of Questions 
Marks 
Coordinate Geometry 
5 
20 
Limits, Continuity and Differentiability 
3 
12 
Integral Calculus 
3 
12 
Complex numbers and Quadratic Equation 
2 
8 
Matrices and Determinants 
2 
8 
Statistics and Probability 
2 
8 
Three Dimensional Geometry 
2 
8 
Vector Algebra 
2 
8 
Sets, Relation and Function 
1 
4 
Permutations and Combinations 
1 
4 
Binomial Theorem and Its Application 
1 
4 
Sequences and Series 
1 
4 
Trigonometry 
1 
4 
Mathematical Reasoning 
1 
4 
Differential Equation 
1 
4 
Statics and Dynamics 
1 
4 
Differential Calculus 
1 
4 
Best Books for JEE Main Mathematics Syllabus
JEE Main 2019 Physics Syllabus
Physics is one of the major sections of JEE Main syllabus 2019. Students have to answer around 40 questions carrying 4 marks each. JEE Main syllabus for Physics comprises topics like Kinematics, Optics, Laws Of Motion, Rotational Motion, Gravitation, Properties Of Solids And Liquids etc. Last year, the highest weightage in Physics was given to topics like current electricity, alternating currect, Rotataional dymanics, Modenr Physics etc Check out the full syllabus below.
Units 
Topics 

Unit 1: Physics And Measurement 
Physics, technology and society, S I units, Fundamental and derived units. Least count, accuracy and precision of measuring instruments, Errors in measurement, Dimensions of Physical quantities, dimensional analysis and its applications 
Unit 2: Kinematics 
Frame of reference. Motion in a straight line: Positiontime graph, speed and velocity. Uniform and nonuniform motion, average speed and instantaneous velocity Uniformly accelerated motion, velocitytime, positiontime graphs, relations for uniformly accelerated motion. Scalars and Vectors, Vector addition and Subtraction, Zero Vector, Scalar and Vector products, Unit Vector, Resolution of a Vector. Relative Velocity, Motion in a plane, Projectile Motion, Uniform Circular Motion 
Unit 3: Laws Of Motion 
Force and Inertia, Newton’s First Law of motion; Momentum, Newton’s Second Law of motion; Impulse; Newton’s Third Law of motion. Law of conservation of linear momentum and its applications, Equilibrium of concurrent forces. 
Static and Kinetic friction, laws of friction, rolling friction 

Dynamics of uniform circular motion: Centripetal force and its applications. 

Unit 4: Work,Energy And Power 
Work done by a constant force and a variable force; kinetic and potential energies, work energy theorem, power. 
Potential energy of a spring, conservation of mechanical energy, conservative and nonconservative forces; Elastic and inelastic collisions in one and two dimensions. 

Unit 5: Rotational Motion 
Centre of mass of a twoparticle system, Centre of mass of a rigid body; Basic concepts of rotational motion; moment of a force, torque, angular momentum, conservation of angular momentum and its applications; moment of inertia, radius of gyration. Values of moments of inertia for simple geometrical objects, parallel and perpendicular axes theorems and their applications. Rigid body rotation, equations of rotational motion. 
Unit 6: Gravitation 
The universal law of gravitation. Acceleration due to gravity and its variation with altitude and depth. Kepler’s laws of planetary motion. Gravitational potential energy; gravitational potential. Escape velocity. Orbital velocity of a satellite. Geostationary satellites. 
Unit 7: Properties Of Solids And Liquids 
Elastic behaviour, Stressstrain relationship, Hooke’s Law, Young’s modulus, bulk modulus, modulus of rigidity. Pressure due to a fluid column; Pascal’s law and its applications. Viscosity, Stokes’ law, terminal velocity, streamline and turbulent flow, Reynolds number. Bernoulli’s principle and its applications. Surface energy and surface tension, angle of contact, application of surface tension – drops, bubbles and capillary rise. Heat, temperature, thermal expansion; specific heat capacity, calorimetry; change of state, latent heat. Heat transferconduction, convection and radiation, Newton’s law of cooling. 
Unit 8: Thermodynamics 
Thermal equilibrium, zeroth law of thermodynamics, concept of temperature. Heat, work and internal energy. First law of thermodynamics. Second law of thermodynamics: reversible and irreversible processes. Carnot engine and its efficiency. 
Unit 9: Kinetic Theory Of Gases 
Equation of state of a perfect gas, work done on compressing a gas. Kinetic theory of gases – assumptions, concept of pressure. Kinetic energy and temperature: rms speed of gas molecules; Degrees of freedom, Law of equipartition of energy, applications to specific heat capacities of gases; Mean free path, Avogadro’s number. 
Unit 10: Oscillations And Waves 
Periodic motion – period, frequency, displacement as a function of time. Periodic functions. Simple harmonic motion (S.H.M.) and its equation; phase; oscillations of a spring restoring force and force constant; energy in S.H.M. – kinetic and potential energies; Simple pendulum – derivation of expression for its time period; Free, forced and damped oscillations, resonance 
Wave motion. Longitudinal and transverse waves, speed of a wave. Displacement relation for a progressive wave. Principle of superposition of waves, reflection of waves, Standing waves in strings and organ pipes, fundamental mode and harmonics, Beats, Doppler effect in sound 

Unit 11: Electrostatics 
Electric charges: Conservation of charge, Coulomb’s lawforces between two point charges, forces between multiple charges; superposition principle and continuous charge distribution. 

Electric field: Electric field due to a point charge, Electric field lines, Electric dipole, Electric field due to a dipole, Torque on a dipole in a uniform electric field. Electric flux, Gauss’s law and its applications to find field due to infinitely long uniformly charged straight wire, uniformly charged infinite plane sheet and uniformly charged thin spherical shell. Electric potential and its calculation for a point charge, electric dipole and system of charges; Equipotential surfaces, Electrical potential energy of a system of two point charges in an electrostatic field. Conductors and insulators, Dielectrics and electric polarization, capacitor, combination of capacitors in series and in parallel, capacitance of a parallel plate capacitor with and without dielectric medium between the plates, Energy stored in a capacitor.

Unit 12: Currrent Electricity

Electric current, Drift velocity, Ohm’s law, Electrical resistance, Resistances of different materials, VI characteristics of Ohmic and nonohmic conductors, Electrical energy and power, Electrical resistivity, Colour code for resistors; Series and parallel combinations of resistors; Temperature dependence of resistance. Electric Cell and its Internal resistance, potential difference and emf of a cell, combination of cells in series and in parallel. Kirchhoff’s laws and their applications. Wheatstone bridge, Metre bridge. Potentiometer – principle and its applications. 
Unit 13: Magnetic Effects Of Current And Magnetism 
Biot – Savart law and its application to current carrying circular loop. Ampere’s law and its applications to infinitely long current carrying straight wire and solenoid. Force on a moving charge in uniform magnetic and electric fields. Cyclotron. Force on a currentcarrying conductor in a uniform magnetic field. Force between two parallel currentcarrying conductorsdefinition of ampere. Torque experienced by a current loop in uniform magnetic field; Moving coil galvanometer, its current sensitivity and conversion to ammeter and voltmeter. Current loop as a magnetic dipole and its magnetic dipole moment. Bar magnet as an equivalent solenoid, magnetic field lines; Earth’s magnetic field and magnetic elements. Para, dia and ferro magnetic substances. Magnetic susceptibility and permeability, Hysteresis, Electromagnets and permanent magnets. 
Unit 14: Electromagnetic Induction And Alternating Currents 
Electromagnetic induction; Faraday’s law, induced emf and current; Lenz’s Law, Eddy currents. Self and mutual inductance. Alternating currents, peak and rms value of alternating current/ voltage; reactance and impedance; LCR series circuit, resonance; Quality factor, power in AC circuits, wattless current. AC generator and transformer. 
Unit 15: Electromagnetic Waves 
Electromagnetic waves and their characteristics. Transverse nature of electromagnetic waves. Electromagnetic spectrum (radio waves, microwaves, infrared, visible, ultraviolet, Xrays, gamma rays). Applications of e.m. waves.

Unit 16: Optics 
Reflection and refraction of light at plane and spherical surfaces, mirror formula, Total internal reflection and its applications, Deviation and Dispersion of light by a prism, Lens Formula, Magnification, Power of a Lens, Combination of thin lenses in contact, Microscope and Astronomical Telescope (reflecting and refracting) and their magnifying powers. Wave optics: wavefront and Huygens’ principle, Laws of reflection and refraction using Huygen’s principle. Interference, Young’s double slit experiment and expression for fringe width. Diffraction due to a single slit, width of central maximum. Resolving power of microscopes and astronomical telescopes, Polarisation, plane polarized light; Brewster’s law, uses of plane polarized light and Polaroids. 
Unit 17: Dual Nature Of Matter Andradiation 
Dual nature of radiation. Photoelectric effect, Hertz and Lenard’s observations; Einstein’s photoelectric equation; particle nature of light. Matter waveswave nature of particle, de Broglie relation. DavissonGermer experiment. 
Unit 18: Atoms And Nuclei 
Alphaparticle scattering experiment; Rutherford’s model of atom; Bohr model, energy levels, hydrogen spectrum. Composition and size of nucleus, atomic masses, isotopes, isobars; isotones. Radioactivityalpha, beta and gamma particles/rays and their properties; radioactive decay law. Massenergy relation, mass defect; binding energy per nucleon and its variation with mass number, nuclear fission and fusion. 
Unit 19: Electronic Devices 
Semiconductors; semiconductor diode: IV characteristics in forward and reverse bias; diode as a rectifier; IV characteristics of LED, photodiode, solar cell and Zener diode; Zener diode as a voltage regulator. Junction transistor, transistor action, characteristics of a transistor; transistor as an amplifier (common emitter configuration) and oscillator. Logic gates (OR, AND, NOT, NAND and NOR). Transistor as a switch. 
Unit 20: Communication Systems

Propagation of electromagnetic waves in the atmosphere; Sky and space wave propagation, Need for modulation, Amplitude and Frequency Modulation, Bandwidth of signals, Bandwidth of Transmission medium, Basic Elements of a Communication System (Block Diagram only). 
Physics Topicwise Weightage (Expected) & Percentage of Questions Asked in JEE Main
Physics Topics & Number of Questions (Expected) Asked in JEE Main
Topics 
No of Questions 
Marks 
Modern Physics 
5 
20 
Heat and Thermodynamics 
3 
12 
Optics 
3 
12 
Current Electricity 
3 
12 
Electrostatics 
3 
12 
Magnetics 
2 
8 
Unit,Dimension and Vector 
1 
4 
Kinematics 
1 
4 
Laws of motion 
1 
4 
Work,Power and Energy 
1 
4 
Centre Of Mass, Impulse and Momentum 
1 
4 
Rotation 
1 
4 
Gravitation 
1 
4 
Simple Harmonic Motion 
1 
4 
Solids and Fluids 
1 
4 
Waves 
1 
4 
Electromagnetics Induction ; AC 
1 
4 
Best Books for JEE Main Physics Syllabus
JEE Main 2019 Chemistry Syllabus
The chemistry section of JEE Main forms onethird of the JEE Main syllabus 2019. This section comprises numerical as well as theoretical questions. In JEE Main 2018, Chemical Bonding in Organic Chemistry, Halogen Derivative in Organic Chemistry and Ionic Equillibrium etc were given the highest weightage. The entire chemistry syllabus in JEE Main is spread over three sections.
Take a look at JEE Main Chemistry syllabus 2019 below.
Units 
Topics 

Section A: Physical Chemistry 

Unit 1: Some Basic Concepts In Chemistry 
Matter and its nature, Dalton’s atomic theory; Concept of atom, molecule, element and compound; Physical quantities and their measurements in Chemistry, precision and accuracy, significant figures, S.I. Units, dimensional analysis; Laws of chemical combination; Atomic and molecular masses, mole concept, molar mass, percentage composition, empirical and molecular formulae; Chemical equations and stoichiometry. 
Unit 2: States Of Matter 
Classification of matter into solid, liquid and gaseous states. 
Gaseous State: Measurable properties of gases; Gas laws – Boyle’s law, Charle’s law, Graham’s law of diffusion, Avogadro’s law, Dalton’s law of partial pressure; Concept of Absolute scale of temperature; Ideal gas equation; Kinetic theory of gases (only postulates); Concept of average, root mean square and most probable velocities; Real gases, deviation from Ideal behaviour, compressibility factor and van der Waals equation. 

Liquid State: Properties of liquids – vapour pressure, viscosity and surface tension and effect of temperature on them (qualitative treatment only). 

Solid State: Classification of solids: molecular, ionic, covalent and metallic solids, amorphous and crystalline solids (elementary idea); Bragg’s Law and its applications; Unit cell and lattices, packing in solids (fcc, bcc and hcp lattices), voids, calculations involving unit cell parameters, imperfection in solids; Electrical, magnetic and dielectric properties. 

Unit 3: Atomic Structure 
Thomson and Rutherford atomic models and their limitations; Nature of electromagnetic radiation, photoelectric effect; Spectrum of hydrogen atom, Bohr model of hydrogen atom – its postulates, derivation of the relations for energy of the electron and radii of the different orbits, limitations of Bohr’s model; Dual nature of matter, deBroglie’s relationship, Heisenberg uncertainty principle. 
Elementary ideas of quantum mechanics, quantum mechanical model of atom, its important features, concept of atomic orbitals as one electron wave functions; various quantum numbers (principal, angular momentum and magnetic quantum numbers) and their significance; shapes of s, p and d – orbitals, electron spin and spin quantum number; Rules for filling electrons in orbitals – aufbau principle, Pauli’s exclusion principle and Hund’s rule, electronic configuration of elements, extra stability of halffilled and completely filled orbitals. 

Unit 4: Chemical Bonding And Molecular Strucure

Kossel – Lewis approach to chemical bond formation, concept of ionic and covalent bonds. 

Ionic Bonding: Formation of ionic bonds, factors affecting the formation of ionic bonds; calculation of lattice enthalpy. 

Covalent Bonding: Concept of electronegativity, Fajan’s rule, dipole moment; Valence Shell Electron Pair Repulsion (VSEPR) theory and shapes of simple molecules. Quantum mechanical approach to covalent bonding: Valence bond theory – Its important features, concept of hybridization involving s, p and d orbitals; Resonance. 
Unit 5: Chemical Thermodynamics 
Fundamentals of thermodynamics: System and surroundings, extensive and intensive properties, state functions, types of processes. 
First law of thermodynamics – Concept of work, heat internal energy and enthalpy, heat capacity, molar heat capacity; Hess’s law of constant heat summation; Enthalpies of bond dissociation, combustion, formation, atomization, sublimation, phase transition, hydration, ionization and solution. Second law of thermodynamics; Spontaneity of processes; DS of the universe and DG of the system as criteria for spontaneity, Dgo (Standard Gibbs energy change) and equilibrium constant. 

Unit 6: Solutions 
Different methods for expressing concentration of solution – molality, molarity, mole fraction, percentage (by volume and mass both), vapour pressure of solutions and Raoult’s Law – Ideal and nonideal solutions, vapour pressure – composition, plots for ideal and nonideal solutions; Colligative properties of dilute solutions – relative lowering of vapour pressure, depression of freezing point, elevation of boiling point and osmotic pressure; Determination of molecular mass using colligative properties; Abnormal value of molar mass, van’t Hoff factor and its significance. 
Unit 7: Equilibrium 
Meaning of equilibrium, concept of dynamic equilibrium. 

Equilibria involving physical processes: Solid liquid, liquid – gas and solid – gas equilibria, Henry’s law, general characterics of equilibrium involving physical processes. 

Ionic equilibrium: Weak and strong electrolytes, ionization of electrolytes, various concepts of acids and bases (Arrhenius, Bronsted – Lowry and Lewis) and their ionization, acid – base equilibria (including multistage ionization) and ionization constants, ionization of water, pH scale, common ion effect, hydrolysis of salts and pH of their solutions, solubility of sparingly soluble salts and solubility products, buffer solutions. 
Unit 8: Redox Reactions And Electrochemistry 
Electronic concepts of oxidation and reduction, redox reactions, oxidation number, rules for assigning oxidation number, balancing of redox reactions. 
Eectrolytic and metallic conduction, conductance in electrolytic solutions, specific and molar conductivities and their variation with concentration: Kohlrausch’s law and its applications. 

Electrochemical cells – Electrolytic and Galvanic cells, different types of electrodes, electrode potentials including standard electrode potential, half – cell and cell reactions, emf of a Galvanic cell and its measurement; Nernst equation and its applications; Relationship between cell potential and Gibbs’ energy change; Dry cell and lead accumulator; Fuel cells. 

Unit 9 : Chemical Kinetics 
Rate of a chemical reaction, factors affecting the rate of reactions: concentration, temperature, pressure and catalyst; elementary and complex reactions, order and molecularity of reactions, rate law, rate constant and its units, differential and integral forms of zero and first order reactions, their characteristics and half – lives, effect of temperature on rate of reactions – Arrhenius theory, activation energy and its calculation, collision theory of bimolecular gaseous reactions (no derivation). 
Unit10 : Surface Chemistry 
Adsorption Physisorption and chemisorption and their characteristics, factors affecting adsorption of gases on solids – Freundlich and Langmuir adsorption isotherms, adsorption from solutions. 
Colloidal state distinction among true solutions, colloids and suspensions, classification of colloids – lyophilic, lyophobic; multi molecular, macromolecular and associated colloids (micelles), preparation and properties of colloids – Tyndall effect, Brownian movement, electrophoresis, dialysis, coagulation and flocculation; Emulsions and their characteristics. 

Section B: Inorganic Chemistry 

Unit 11: Classificaton Of Elements And Periodicity In Properties 
Modem periodic law and present form of the periodic table, s, p, d and f block elements, periodic trends in properties of elements atomic and ionic radii, ionization enthalpy, electron gain enthalpy, valence, oxidation states and chemical reactivity. 
Unit 12: General Principles And Processes Of Isolation Of Metals 
Modes of occurrence of elements in nature, minerals, ores; Steps involved in the extraction of metals – concentration, reduction (chemical and electrolytic methods) and refining with special reference to the extraction of Al, Cu, Zn and Fe; Thermodynamic and electrochemical principles involved in the extraction of metals. 
Unit 13: Hydrogen 
Position of hydrogen in periodic table, isotopes, preparation, properties and uses of hydrogen; Physical and chemical properties of water and heavy water; Structure, preparation, reactions and uses of hydrogen peroxide; Hydrogen as a fuel. 
Unit 14: S – Block Elements (Alkali And Alkaline Earth Metals) 
Group – 1 and 2 Elements: General introduction, electronic configuration and general trends in physical and chemical properties of elements, anomalous properties of the first element of each group, diagonal relationships. 

Preparation and properties of some important compounds – sodium carbonate and sodium hydroxide; Industrial uses of lime, limestone, Plaster of Paris and cement; Biological significance of Na, K, Mg and Ca. 
Unit 15: P – Block Elements 
Group – 13 to Group 18 Elements: General Introduction: Electronic configuration and general trends in physical and chemical properties of elements across the periods and down the groups; unique behaviour of the first element in each group. 

Groupwise study of the p – block elements Group – 13: Preparation, properties and uses of boron and aluminium; properties of boric acid, diborane, boron trifluoride, aluminium chloride and alums. Group – 14: Allotropes of carbon, tendency for catenation; Structure & properties of silicates, and zeolites. Group – 15: Properties and uses of nitrogen and phosphorus; Allotrophic forms of phosphorus; Preparation, properties, structure and uses of ammonia, nitric acid, phosphine and phosphorus halides, (PCl3, PCl5); Structures of oxides and oxoacids of phosphorus. Group – 16: Preparation, properties, structures and uses of ozone; Allotropic forms of sulphur; Preparation, properties, structures and uses of sulphuric acid (including its industrial preparation); Structures of oxoacids of sulphur. Group – 17: Preparation, properties and uses of hydrochloric acid; Trends in the acidic nature of hydrogen halides; Structures of Interhalogen compounds and oxides and oxoacids of halogens. Group –18: Occurrence and uses of noble gases; Structures of fluorides and oxides of xenon. 
UNIT 16: D – And F – BLOCK ELEMENTS 
Transition Elements: General introduction, electronic configuration, occurrence and characteristics, general trends in properties of the first row transition elements – physical properties, ionization enthalpy, oxidation states, atomic radii, colour, catalytic behaviour, magnetic properties, complex formation, interstitial compounds, alloy formation; Preparation, properties and uses of K2 Cr2 O7 and KMnO4 . 
Inner Transition Elements: Lanthanoids – Electronic configuration, oxidation states and lanthanoid contraction. 

Actinoids – Electronic configuration and oxidation states. 

Unit 17: CoOrdination Compounds 
Introduction to coordination compounds, Werner’s theory; ligands, coordination number, denticity, chelation; IUPAC nomenclature of mononuclear coordination compounds, isomerism; BondingValence bond approach and basic ideas of Crystal field theory, colour and magnetic properties; Importance of coordination compounds (in qualitative analysis, extraction of metals and in biological systems). 
Unit 18: Environmental Chemistry 
Environmental pollution – Atmospheric, water and soil. Atmospheric pollution – Tropospheric and Stratospheric Tropospheric pollutants – Gaseous pollutants: Oxides of carbon, nitrogen and sulphur, hydrocarbons; their sources, harmful effects and prevention; Greenhouse effect and Global warming; Acid rain; Particulate pollutants: Smoke, dust, smog, fumes, mist; their sources, harmful effects and prevention. Stratospheric pollution Formation and breakdown of ozone, depletion of ozone layer – its mechanism and effects. Water Pollution – Major pollutants such as, pathogens, organic wastes and chemical pollutants; their harmful effects and prevention. Soil pollution – Major pollutants such as: Pesticides (insecticides,. herbicides and fungicides), their harmful effects and prevention. Strategies to control environmental pollution.

Section C: Organic Chemistry 

Unit 19: Purification And Characterisation Of Organic Compounds 
Purification – Crystallization, sublimation, distillation, differential extraction and chromatography – principles and their applications 
Qualitative analysis – Detection of nitrogen, sulphur, phosphorus and halogens. 

Quantitative analysis (basic principles only) – Estimation of carbon, hydrogen, nitrogen, halogens, sulphur, phosphorus. 

Calculations of empirical formulae and molecular formulae; Numerical problems in organic quantitative analysis. 

Unit 20: Some Basic Principles Of Organic Chemistry 
Tetravalency of carbon; Shapes of simple molecules – hybridization (s and p); Classification of organic compounds based on functional groups: – C = C – , – C h C – and those containing halogens, oxygen, nitrogen and sulphur; Homologous series; Isomerism – structural and stereoisomerism. 

Nomenclature (Trivial and IUPAC) 
Unit 21: Hydrocarbons 
Classification, isomerism, IUPAC nomenclature, general methods of preparation, properties and reactions. 
Alkenes – Geometrical isomerism; Mechanism of electrophilic addition: addition of hydrogen, halogens, water, hydrogen halides (Markownikoff’s and peroxide effect); Ozonolysis and polymerization. 

Alkynes – Acidic character; Addition of hydrogen, halogens, water and hydrogen halides; Polymerization. 

Aromatic hydrocarbons – Nomenclature, benzene – structure and aromaticity; Mechanism of electrophilic substitution: halogenation, nitration, Friedel – Craft’s alkylation and acylation, directive influence of functional group in monosubstituted benzene. 

Unit 22: Organic Compounds Containing Halogens 
General methods of preparation, properties and reactions; Nature of CX bond; Mechanisms of substitution reactions. 
Uses; Environmental effects of chloroform & iodoform. 

Unit 23: Organic Compounds Containing Oxygen 
General methods of preparation, properties, reactions and uses. 
Alcohols, Phenols And Ethers 
Alcohols: Identification of primary, secondary and tertiary alcohols; mechanism of dehydration. Phenols: Acidic nature, electrophilic substitution reactions: halogenation, nitration and sulphonation, Reimer – Tiemann reaction. Ethers: Structure. Aldehyde and Ketones: Nature of carbonyl group;Nucleophilic addition to >C=O group, relative reactivities of aldehydes and ketones; Important reactions such as – Nucleophilic addition reactions (addition of HCN, NH3 and its derivatives), Grignard reagent; oxidation; reduction (Wolff Kishner and Clemmensen); acidity of r – hydrogen, aldol condensation, Cannizzaro reaction, Haloform reaction; Chemical tests to distinguish between aldehydes and Ketones. 
Carboxylic Acids 
Acidic strength and factors affecting it.

UNIT 24: ORGANIC COMPOUNDS CONTAINING NITROGEN 
General methods of preparation, properties, reactions and uses. Amines: Nomenclature, classification, structure, basic character and identification of primary, secondary and tertiary amines and their basic character. Diazonium Salts: Importance in synthetic organic chemistry. 
UNIT 25: POLYMERS 
General introduction and classification of polymers, general methods of polymerizationaddition and condensation, copolymerization; Natural and synthetic rubber and vulcanization; some important polymers with emphasis on their monomers and uses – polythene, nylon, polyester and bakelite. 
UNIT 26: BIOMOLECULES 
General introduction and importance of biomolecules. CARBOHYDRATES – Classification: aldoses and ketoses; monosaccharides (glucose and fructose) and constituent monosaccharides of oligosacchorides (sucrose, lactose and maltose). PROTEINS – Elementary Idea of r – amino acids, peptide bond, polypeptides; Proteins: primary, secondary, tertiary and quaternary structure (qualitative idea only), denaturation of proteins, enzymes. VITAMINS – Classification and functions. NUCLEIC ACIDS – Chemical constitution of DNA and RNA. Biological functions of nucleic acids. 
UNIT 27: CHEMISTRY IN EVERYDAY LIFE 
Chemicals in medicines – Analgesics, tranquilizers, antiseptics, disinfectants, antimicrobials, antifertility drugs, antibiotics, antacids, antihistamins – their meaning and common examples. 
Chemicals in food – Preservatives, artificial sweetening agents – common examples. Cleansing agents – Soaps and detergents, cleansing action. 

UNIT 28: PRINCIPLES RELATED TO PRACTICAL CHEMISTRY 
Detection of extra elements (N,S, halogens) in organic compounds; Detection of the following functional groups: hydroxyl (alcoholic and phenolic), carbonyl (aldehyde and ketone), carboxyl and amino groups in organic compounds. 
Chemistry involved in the preparation of the following: Inorganic compounds: Mohr’s salt, potash alum. Organic compounds: Acetanilide, pnitroacetanilide, aniline yellow, iodoform. 

Chemistry involved in the titrimetric excercises – Acids bases and the use of indicators, oxalicacid vs KMnO4, Mohr’s salt vs KMnO4. 

Chemical principles involved in the qualitative salt analysis: Cations – Pb2+ , Cu2+, AI3+, Fe3+, Zn2+, Ni2+, Ca2+, Ba2+, Mg2+, NH4+. Anions CO3 2, S2, SO4 2, NO2, NO3, CI , Br, I. (Insoluble salts excluded). 
READ  These tips will help NEET repeaters to secure a seat next year
READ  Tips to crack JEE
Also Read : List Of Foreign Medical Institutions/Universities For MBBS
For all latest Govt Jobs 2018, Railway Jobs, Bank Jobs and SSC Jobs log on to https://goo.gl/YPjt94 We bring you fastest and relevant notifications on Bank, Railways and Govt Jobs. Stay Connected
Application Start Date  :  8th February 2019 

Application End Date  :  7th March 2019 
Exam Date  :  7th April 2019 
Result Date  :  19th January 2019 
Conducted By  :  Central Board of Secondary Education (CBSE) 
Official Website  :  https://www.nta.ac.in/ 